Two Results on Branched Coverings of Grassmannians
نویسنده
چکیده
Introduction. In this paper we present two results on branched coverings of Grassmannians.
منابع مشابه
On branched coverings of some homogeneous spaces
We study nonsingular branched coverings of a homogeneous space X. There is a vector bundle associated with such a covering which was conjectured by O. Debarre to be ample when the Picard number of X is one. We prove this conjecture, which implies Barth-Lefschetz type theorems, for lagrangian grassmannians, and for quadrics up to dimension six. We propose a conjectural extension to homogeneous s...
متن کامل- homomorphisms , transfers and branched coverings
The main purpose is to characterise continuous maps that are n-branched coverings in terms of induced maps on the rings of functions. The special properties of Frobenius n-homomorphisms between two function spaces that correspond to n-branched coverings are determined completely. Several equivalent definitions of a Frobenius n-homomorphism are compared and some of their properties are proved. A...
متن کاملFrobenius n-homomorphisms, transfers and branched coverings
The main purpose is to characterise continuous maps that are n-branched coverings in terms of induced maps on the rings of functions. The special properties of Frobenius nhomomorphisms between two function spaces that correspond to n-branched coverings are determined completely. Several equivalent definitions of a Frobenius n-homomorphism are compared and some of their properties are proved. An...
متن کاملOn realizability of branched coverings of the sphere
We introduce a simple geometric method of determining which abstract branch data can be realizable by branched coverings of the two-dimensional sphere S 2 (the Hurwitz problem). Using this method we the realizability of some classes of data.
متن کاملEnumeration of the Branched Zp-Coverings of Closed Surfaces
A continuous function p : S̃ → S between two surfaces S̃ and S is called a branched covering if there exists a finite set B in S such that the restriction of p to S̃ − p−1(B), p | S̃−p−1(B) : S̃− p −1(B)→ S− B, is a covering projection in the usual sense. The smallest set B of S which has this property is called the branch set. A branched covering p : S̃ → S is regular if there exists a (finite) grou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996